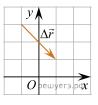

При выполнении заданий с кратким ответом впишите в поле для ответа цифру, которая соответствует номеру правильного ответа, или число, слово, последовательность букв (слов) или цифр. Ответ следует записывать без пробелов и каких-либо дополнительных символов. Дробную часть отделяйте от целой десятичной запятой. Единицы измерений писать не нужно. Ответ с погрешностью вида (1,4 ± 0,2) Н записывайте следующим образом: 1,40,2.


Если вариант задан учителем, вы можете вписать или загрузить в систему ответы к заданиям с развернутым ответом. Учитель увидит результаты выполнения заданий с кратким ответом и сможет оценить загруженные ответы к заданиям с развернутым ответом. Выставленные учителем баллы отобразятся в вашей статистике.

1. На рисунке представлен график перехода идеального газа, количество вещества которого постоянно, из состояния 1 в состояние 6 в координатах (p, T). К изопроцессам можно отнести следующие переходы:

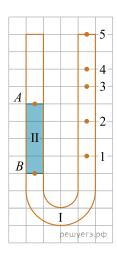
1) $1 \rightarrow 2$ 2) $2 \rightarrow 3$ 3) $3 \rightarrow 4$ 4) $4 \rightarrow 5$ 5) $5 \rightarrow 6$

2. Материальная точка совершила перемещение $\Delta \vec{r}$ в плоскости рисунка (см. рис.). Для проекций этого перемещения на оси Ох и Оу справедливы соотношения, указанные под номером:

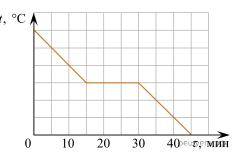
1) $\Delta r_x > 0, \Delta r_y < 0$ 2) $\Delta r_x > 0, \Delta r_y > 0$ 3) $\Delta r_x = 0, \Delta r_y > 0$ 4) $\Delta r_x < 0, \Delta r_y = 0$ 5) $\Delta r_x < 0, \Delta r_y < 0$

3. По параллельным участкам соседних железнодорожных путей в одном направлении равномерно двигались два поезда: пассажирский и товарный. Модуль скорости пассажирского поезда $v_1=72~\frac{\mathrm{KM}}{\mathrm{q}}$. Длина товарного поезда $l=0,40~\mathrm{KM}$. Если пассажир, сидящий у окна в вагоне пассажирского поезда, заметил, что товарный поезд проехал мимо него за промежуток времени $\Delta t = 40 \, \, \mathrm{c}$, то модуль скорости υ2 товарного поезда равен:

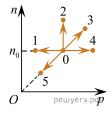
1) $20 \frac{M}{c}$ 2) $22 \frac{M}{c}$ 3) $24 \frac{M}{c}$ 4) $30 \frac{M}{c}$ 5) $35 \frac{M}{c}$


4. Материальная точка движется равномерно по окружности радиусом R = 38 см со скоростью, модуль которой υ = 1,9 м/с. Радиус-вектор, проведённый из центра окружности к материальной точке, повернётся на угол $\Delta \phi = 20$ рад за промежуток времени Δt , равный:

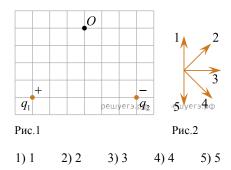
> 1) 5 c 2) 4 c 3) 3 c 4) 2 c 5) 1 c


5. Мяч свободно падает с высоты H=9 м без начальной скорости. Если нулевой уровень потенциальной энергии выбран на поверхности Земли, то отношение потенциальной энергии Π мяча к его кинетической энергии K на высоте h=4 м равно:

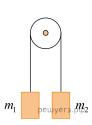
1) $\frac{2}{3}$ 2) $\frac{3}{5}$ 3) $\frac{4}{5}$ 4) $\frac{4}{7}$ 5) $\frac{5}{4}$


6. В левое колено U-образной трубки с жидкостью I долили не смешивающуюся с ней жидкость II, плотность которой $ho_{II}=rac{3}{4}
ho_{I}$ (см. рис.). Если в состоянии равновесия точка A находится на границе жидкость II — воздух, а точка B — на границе жидкость I — жидкость II, то на границе жидкость I — воздух находится точка под номером:

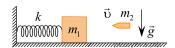
- 1) 1 2) 2 3)3 5)5
- 7. В момент времени $\tau_0 = 0$ мин жидкое вещество начали охлаждать при постоянном давлении, ежесекундно отнимая у вещества одно и то же количество теплоты. На рисунке приведён график зависимости температуры t вещества от времени т. Одна треть массы вещества закристаллизовалась к моменту времени τ_1 , равному:



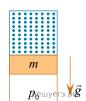
- 1) 5 мин
- 2) 20 мин
- 3) 25 мин
- 4) 30 мин
- 5) 35 мин
- **8.** Число молекул $N=1,7\cdot 10^{26}$ некоторого вещества ($\rho=8,9$ г/см³, M=64 г/моль) занимает объем V, равный:
 - $1) 0.50 \text{ дм}^3$
- 2) 1.0 дм³
- 3) 1.5 дм³
- $4) 2.0 \text{ дм}^3$
- 9. На рисунке изображена зависимость концентрации п молекул от давления р для пяти процессов с идеальным газом, количество вещества которого постоянно. Изохорное нагревание газа происходит в про-

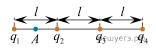


- 1) 0-1 2) 0-2 3) 0-3 4) 0-4

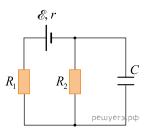

- 10. Точечные заряды, модули которых $|q_I| = |q_2|$ расположены на одной прямой (рис. 1). Направление напряженности E результирующего электростатического поля, созданного этими зарядами в точке О, на рисунке 2 обозначено цифрой:

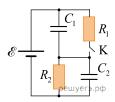
- 11. Два неподвижных точечных заряда, находящихся в воздухе (є1 = 1,0), взаимодействуют с силой, модуль которой $F_1 = 400$ мкН. Если эти заряды поместить в жидкий диэлектрик ($\varepsilon_2 = 2,0$) и расстояние между ними увеличить в n = 2,0 раза, то модуль силы F_2 взаимодействия зарядов в диэлектрике станет равным ... мкH.
- 12. Два небольших груза массами $m_1 = 0.17$ кг и $m_2 = 0.29$ кг подвешены на концах невесомой нерастяжимой нити, перекинутой через неподвижный гладкий цилиндр. В начальный момент времени оба груза удерживали на одном уровне в состоянии покоя (см. рис.). Через промежуток времени $\Delta t = 0,60~\mathrm{c}$ после того как их отпустили, модуль перемещения $|\Delta \vec{r}|$ грузов друг относительно друга стал равен ... см.

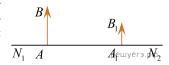

- 13. Камень массой m = 0,40 кг бросили с башни в горизонтальном направлении с начальной скоростью, модуль которой $v_0 = 15$ $rac{\mathrm{M}}{\mathrm{c}}$. Кинетическая энергия E_{K} камня через промежуток времени $\Delta t = 1,0$ с после броска равна ...Дж.
- 14. В брусок, лежавший на гладкой горизонтальной поверхности и прикрепленный к вертикальному упору легкой пружиной жесткости k = 1,2 кН/м, попадает и застревает в нем пуля массы $m_2 = 0.01$ кг, летевшая со скоростью, модуль которой $\upsilon = 56$ м/с, направленной вдоль оси пружины (см. рис.). Если максимальное значение силы, которой пружина действует на упор в процессе возникших колебаний, $F_{\rm max}$ = 13,7 H, то масса m_1 бруска равна ... кг. Ответ округлите до целого.

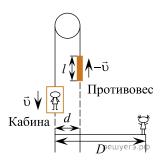

- **15.** Идеальный одноатомный газ, начальный объем которого $V_1 = 8 \text{ м}^3$, а количество вещества остается постоянным, находится под давлением $p_1 = 8 \cdot 10^5 \text{ Па.}$ Газ охлаждают сначала изобарно, а затем продолжают охлаждение при постоянном объеме до давления $p_2 = 4 \cdot 10^5 \text{ Па.}$ Если при переходе из начального состояния в конечное газ отдает количество теплоты Q = 9 МДж, то его объем V_2 в конечном состоянии равен ... \mathbf{m}^3 .
- **16.** Велосипедную камеру, из которой был удалён весь воздух, накачивают с помощью насоса. При каждом ходе поршня насос захватывает из атмосферы воздух объёмом $V_0=4,8\cdot 10^{-5}\,$ м 3 . Чтобы объём воздуха в камере стал равным $V_1=2,4\cdot 10^{-3}\,$ м 3 , его давление достигло значения $p_1=1,6\cdot 10^5\,$ Па, поршень должен сделать число N ходов, равное

Примечание. Атмосферное давление $p_0 = 1, 0 \cdot 10^5 \, \Pi a$, изменением температуры воздуха при накачивании камеры пренебречь.


17. В вертикальном цилиндрическом сосуде, закрытом снизу легкоподвижным поршнем массой m=10 кг и площадью поперечного сечения $S=40~{\rm cm}^2$, содержится идеальный одноатомный газ. Сосуд находится в воздухе, атмосферное давление которого $p_0=100~{\rm k}$ Па. Если при изобарном нагревании газу сообщить количество теплоты $Q=225~{\rm Дж}$, то поршень переместится на расстояние $|\Delta h|$, равное ... см.


18. Четыре точечных заряда $q_1=0.75$ нКл, $q_2=-0.75$ нКл, $q_3=0.9$ нКл, $q_4=-2.5$ нКл расположены в вакууме на одной прямой (см. рис.). Если в точке A, находящейся посередине между зарядами q_1 и q_2 , модуль напряженности электростатического поля системы зарядов E=15 кВ/м, то расстояние l между соседними зарядами равно ... **мм**.

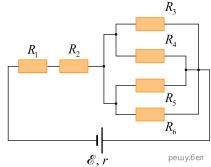

19. Электрическая цепь состоит из источника постоянного тока с ЭДС ε = 120 В и с внутренним сопротивлением r = 2,0 Ом, конденсатора ёмкостью C = 0,60 мкФ и двух резисторов (см. рис.). Если сопротивления резисторов R_1 = R_2 = 5,0 Ом, то заряд q конденсатора равен ... мкКл.


- **20.** Тонкое проволочное кольцо радиусом r=2,0 см и массой m=98,6 мг, изготовленное из проводника сопротивлением R=40 мОм, находится в неоднородном магнитном поле, проекция индукции которого на ось Ox имеет вид $B_x=kx$, где k=10 Тл/м, x координата. В направлении оси Ox кольцу ударом сообщили скорость, модуль которой $v_0=10$ м/с. Если плоскость кольца во время движения была перпендикулярна оси Ox, то до остановки кольцо прошло расстояние s, равное ... **см**.
- **21.** Протон, начальная скорость которого $v_0 = 0$ м/с, ускоряется разностью потенциалов $\varphi_1 \varphi_2 = 0,45$ кВ и влетает в однородное магнитное поле перпендикулярно линиям магнитной индукции. Если модуль вектора магнитной индукции магнитного поля B = 0,30 Тл, то радиус R окружности, по которой протон будет двигаться в магнитном поле, равен ... мм. (Ответ округлите до целого числа мм.)
- **22.** В электрической цепи, схема которой представлена на рисунке, ёмкости конденсаторов $C_1=40$ мкФ, $C_2=120$ мкФ, ЭДС источника тока $\epsilon=90,0$ В. Сопротивление резистора R_2 в два раза больше сопротивления резистора R_1 , то есть $R_2=2R_1$. В начальный момент времени ключ K замкнут и через резисторы протекает постоянный ток. Если внутреннее сопротивление источника тока пренебрежимо мало, то после размыкания ключа K в резисторе R_2 выделится количество теплоты Q_2 , равное ... мДж.

23. Стрелка AB высотой H=3,0 см и её изображение A_1B_1 высотой h=2,0 см,формируемое тонкой линзой, перпендикулярны главной оптической оси N_1N_2 линзы (см. рис.). Если расстояние между стрелкой и её изображением $AA_1=7,0$ см, то модуль фокусного расстояния |F| линзы равен ... см.

24. Парень, находящийся в середине движущейся вниз кабины панорамного лифта торгового центра, встретился взглядом с девушкой, неподвижно стоящей на расстоянии D=8.0 м от вертикали, проходящей через центр кабины (см. рис.). Затем из-за непрозрачного противовеса лифта длиной l=4.1 м, движущегося на расстоянии d=2.0 м от вертикали, проходящей через центр кабины, парень не видел глаза девушки в течение промежутка времени $\Delta t=3.0$ с. Если кабина и противовес движутся в противоположных направлениях с одинаковыми по модулю скоростями, то чему равен модуль скорости кабины? Ответ приведите а сантиметрах в секунду.

25. Если за время $\Delta t = 30$ суток показания счётчика электроэнергии в квартире увеличились на $\Delta W = 31,7$ кВт · ч, то средняя мощность P, потребляемая электроприборами в квартире, равна ... Вт.

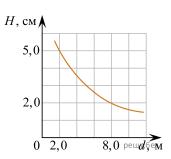

26. Электрическая цепь состоит из источника тока, внутреннее сопротивление которого r=0,50 Ом, и резистора сопротивлением R=10 Ом. Если сила тока в цепи I=2,0 А, то ЭДС $\mathcal E$ источника тока равна ... В.

27.

На рисунке изображена схема электрической цепи, состоящей из источника тока и шести одинаковых резисторов

$$R_1 = R_2 = R_3 = R_4 = R_5 = R_6 = 10,0 \text{ Om.}$$

В резисторе R_6 выделяется тепловая мощность $P_6 = 90,0$ Вт. Если внутреннее сопротивление источника тока r = 4,00 Ом, то ЭДС $\mathcal E$ источника тока равна ... В.


28. Электрон, модуль скорости которого $\upsilon=1,0\cdot 10^6~\frac{\rm M}{\rm c}$, движется по окружности в однородном магнитном поле. Если на электрон действует сила Лоренца, модуль которой $F_{\rm Л}=6,4\cdot 10^{-15}~{\rm H}$, то модуль индукции B магнитного поля равен ... мТл.

29. В идеальном колебательном контуре, состоящем из конденсатора и катушки, индуктивность которой L=0.20 мГн, происходят свободные электромагнитные колебания. Если циклическая частота электромагнитных колебаний $\omega=1.0\cdot 10^4 \, \frac{\mathrm{pag}}{\mathrm{c}}$, то ёмкость C конденсатора равна ... мк Φ .

30.

График зависимости высоты H изображения карандаша, полученного с помощью тонкой рассеивающей линзы, от расстояния d между линзой и карандашом показан на рисунке. Модуль фокусного расстояния |F| рассеивающей линзы равен ... дм.

Примечание. Карандаш расположен перпендикулярно главной оптической оси линзы.

